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1 INTRODUCTION 

Nascap-2k is a spacecraft charging and plasma interactions code designed to be used by 

spacecraft designers, aerospace and materials engineers, and space plasma environments experts 

to study the effects of both the natural and spacecraft-generated plasma environments on 

spacecraft systems.  

Designers of spacecraft for government, commercial, and research purposes require advanced 

modeling capabilities to guide the design of satellites that can survive and operate properly in the 

natural environment. Computer modeling of flight experiments (such as SCATHA (Spacecraft 

Charging at High Altitude), [1] the SPEAR (Space Power Experiments Aboard Rockets) [2, 3]
 

series, and
 
CHAWS (Charging Hazards and Wake Studies)[4]) has demonstrated excellent ability 

to predict both steady-state and dynamic interactions between high-voltage spacecraft and the 

ambient plasma. This ability was also extended to inherently dynamic problems involving three-

dimensional space charge sheath formation, current flow in the quasi-neutral presheath, 

breakdown phenomena, plasma kinetics, ionization processes, and the effect of unsteady 

processes on spacecraft charging. 

Nascap-2k encapsulates the knowledge gained in these efforts as well as in modeling spacecraft 

with unique requirements and destined for disparate environments. This gives the spacecraft 

designer quality modeling capabilities by taking advantage of the present understanding of the 

pertinent phenomena, employing advanced algorithms, and implementing a state-of-the-art user 

interface, including three-dimensional post-processing graphics. 

The core capabilities of Nascap-2k are as follows: 

 Define spacecraft surfaces and geometry and the structure of the computational space 

surrounding the spacecraft.  

 Solve for time-dependent potentials on spacecraft surfaces. 

 Solve the electrostatic potential around the object, with flexible boundary conditions on the 

object and with space-charge computed either fully by particles, fully analytically, or in a 

hybrid manner.  

 Generate, track, and otherwise process particles of various species, represented as macro-

particles, in the computational space. 

 View surface potentials, space potentials, particle trajectories, and time-dependent potentials 

and currents. 

Nascap-2k calculates surface charging in tenuous plasma environments, such as geosynchronous 

earth orbit (GEO) and interplanetary (Solar Wind) environments, using the Boundary Element 

Method [5] (BEM). The Boundary Element Method facilitates calculation of surface electric 

fields (which limit the emission of photoelectrons and secondary electrons) without the need to 

grid the space surrounding the spacecraft. It also enables Nascap-2k to anticipate electric field 

changes due to surface charging, resulting in a smoother and more stable charging simulation. 

Nascap-2k uses a high-order, finite-element representation for the electrostatic potential that 

ensures electric fields are strictly continuous throughout space. The electrostatic potential solver 
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uses a finite element/conjugate gradient technique to solve for the potentials and fields on the 

spacecraft surface and throughout the surrounding space. Space charge density models presently 

include Laplacian, Linear, Nonlinear, Frozen Ions, Consistent with Ion Density, Full PIC 

(Particle-in-Cell), and Hybrid PIC.  

Particle tracking is used to simulate sheath currents, to study detector response, or to generate 

space charge evolution for dynamic calculations. Nascap-2k generates macroparticles (each of 

which represents a collection of particles) at either a sheath boundary, the problem boundary, at 

user-specified locations, or throughout all space. Particles are tracked for a specified amount of 

time, with the timestep automatically subdivided at each step of each particle to maintain 

accuracy. The current to each surface element of the spacecraft is recorded for further processing.  

Nascap-2k User’s Manual is the primary document on the use of the code. This document, 

Nascap-2k Scientific Documentation, describes the physics and numeric models used in the 

surface charging, potential solution and particle tracking portions of the code. Section 2, Physical 

Models, describes the physics models included in the code. Section 3, Numeric Models describes 

the implementation. 

2 PHYSICAL MODELS 

Nascap-2k incorporates physical models appropriate to both tenuous (e.g., GEO orbit or 

interplanetary missions) and dense (e.g., LEO orbit) plasma environments. The code solves for 

environmentally-induced time-dependent potentials on spacecraft surfaces, the electrostatic 

potential about the object, and the resulting charged particle motion.  

Time-dependent surface potentials are computed using orbit limited currents in tenuous plasma, 

tracked currents and/or analytic approximations in dense plasma, or a combination in 

intermediate environments.  

The electrostatic potential solver uses a conjugate gradient technique with flexible boundary 

conditions to solve Poisson’s equation for the potentials and fields throughout the computational 

space. Several analytic and numeric space charge density models are available.  

Particle tracking is used to study sheath currents, to study detector response, to generate steady-

state charge densities, and to generate space charge evolution for dynamic calculations. 

2.1 Surface Charging from Orbit Limited Currents 

Spacecraft surface charging is the accumulation of charge on spacecraft surfaces. As illustrated 

in Figure 1, several different current components can contribute to the charging. [6,7,8,9]  First 

there are the incident charged particles. The impact of high-energy electrons and ions causes the 

ejection of secondary electrons into space. Incident electrons can also be reflected as backscatter. 

In sunlight solar ultraviolet radiation generates low-energy photoelectrons, which are ejected 

from the surface. Due to the low mass of electrons, the incident electron current is generally 

higher than the ion current. By itself, this would lead to negative charging. However, with the 

inclusion of the other terms, all of which contribute positive current, the net current can be either 

positive or negative.  
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Figure 1. High Negative Potentials can Result from the Accumulation of Charge on 

Spacecraft Surfaces 

The rest of the spacecraft influences the potential and local electric field of each surface. Each 

conductor and each insulating spacecraft surface collects current from the plasma and is 

capacitively and resistively coupled to the other conductors and other surfaces. Additionally, 

some spacecraft have current sources, such as electron and ion guns, that contribute to the net 

current. Nascap-2k uses the spacecraft geometry, surface materials, plasma environment, and sun 

intensity and direction to calculate the time history of the surface potentials, electric fields, and 

fluxes. 

If the net current is initially negative or positive, the exposed surface begins to acquire a negative 

or positive potential respectively. As the magnitude of the potential increases, the net current is 

attenuated, until it eventually approaches zero and the surface potential reaches its equilibrium 

value. Negative potentials as high as ten kilovolts have been observed during geosynchronous 

substorms and over one kilovolt during auroral precipitation events. Because positive currents 

generally result from emission of low energy secondary electrons and photoelectrons, the 

positive potentials that can be attained are relatively modest. As soon as the surface reaches a 

potential greater than that of the emitted electrons they are re-attracted to the surface, so their 

contribution to the current is suppressed. The equilibrium potential is determined by the 

suppression of low energy emission due to the surface’s own electric field. A similar suppression 

effect may occur due to the electric fields of neighboring negative charged surfaces. This effect is 

the primary reason that accurate spacecraft surface charging calculations are inherently three 

dimensional.  

Positive potentials up to 100 V are possible in environments where the plasma current is small 

compared with the photo current (outer magnetosphere and in the solar wind). In these 

environments, the small incident plasma current is balanced by escape of the high energy tail of 

the photoelectron energy distribution, even though the bulk of the emitted photoelectrons return 

to the surface.  

Nascap-2k models the spacecraft as a collection of surfaces that are either conductive or are a 

dielectric film over a conductive substrate. The conductive surfaces and substrates can be at the 

same potential or biased with respect to each other. 

electrons

ions

photons

secondary, backscattered, 
photo electrons
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2.1.1 Plasma Environment 

In the orbit limited approximation of the current incident on a surface, the flux is calculated as 

that incident on a sphere of the same potential and depends only on the surface potential, and 

optionally an angle with respect to the direction of flow. This approximation applies if any 

charged particle far from the spacecraft can reach the surface, that is, there are no excluded 

orbits. For spacecraft this is generally true if the Debye length is long compared with the 

spacecraft size and the spacecraft is essentially convex with no self-shading. ―Surface Charging‖ 

calculations with ―Analytic Currents‖ in ―Geosynchronous,‖ ―Auroral,‖ and ―Interplanetary‖ 

environments use the orbit limited approximation, and ―Surface Charging‖ calculations with 

―Tracked Ions and Analytic Electron Currents‖ in the ―Auroral‖ environment use this 

approximation for electrons. 

The analytic current density to a surface at potential  is given by integrating over the 

distribution function. 
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Where the integration variable E represents the energy at the surface, the integration limit L is 0 

for the repelled species and || for the attracted species, the fraction in parentheses represents the 

orbit limited enhancement or reduction of current, the upper sign is for ions and the lower sign is 

for electrons, f(E) is the distribution function at infinity, and F(E) is the flux at infinity. 

Depending on the model selected the flux is given by one of the following formulas, in which the 

particle energy E and the temperature  are measured in electron volts, and the surface potential 

ϕ is measured in volts. 
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Fontheim (electrons only) 

This distribution is used to model auroral electrons. 
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where  is the Heaviside step function and EL and EU are upper and lower energy limits. 

Kappa 
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Convected Maxwellian 

This distribution is used to model a flowing plasma. 
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where U is the velocity of the plasma in the spacecraft frame of reference and  is the angle 

between the flow vector and the incident velocity at infinity, which can be related to the velocity 

at which the particle strikes the surface. 

2.1.2 Secondary and Backscattered Current 

The secondary and backscattered currents are given by  
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where Y
s,b

 is the number of secondary or backscattered (respectively) electrons per incident 

charged particle (after accounting for the angular distribution of the incident particles) and F is 

the flux at infinity of the appropriate incident charged particle. 

We take the spectrum of emitted secondary electrons to be a Maxwellian characterized by a 

temperature of 2 eV. It follows that the effective secondary electron current from surfaces at 

positive potentials is reduced by a factor of exp(-2) relative to Equation (7). The current can 

also be reduced by an electron-attracting  0nE  electric field.  

2.1.3 Photocurrent 

For surfaces at negative potentials, the photocurrent depends on the surface material, angle of 

incident sunlight, and distance from the sun. As with secondaries, the photoelectron spectrum is 

by default taken to be a Maxwellian characterized by a temperature of 2 eV, so that current 

escaping from surfaces at positive potentials is reduced by a factor of exp(-2).  

Spacecraft in the solar wind normally charge to positive potential (a few volts to tens of volts) to 

balance the emitted photoelectron current with a very low incident current of ambient electrons. 

Unlike geosynchronous substorm charging, where the spacecraft goes negative, determining how 
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positive the spacecraft charges requires knowledge of the high-energy portion of the 

photoelectron spectrum. When the user provides a tabular spectrum, the tabular spectrum is used 

to determine the escaping photocurrent rather than the default exp(-2).  

2.1.4 Other Current Sources 

Conduction Current through Insulators 

For the case of interest, in which the deposition thickness is short compared with the thickness of 

the insulator layer, the electric field is spatially uniform throughout the layer and current is 

conducted through it. (Note: the range of a 40 keV electron in aluminum is ~15 microns 

(~ 0.0006 inches).) For insulating surface elements, the current through the layer to the 

underlying conductive substrate is given as a function of the conductivity and thickness of the 

layer by Ohm’s Law:  

 d
jconductor






 (8) 

where  is the difference in potential between the surface and the conductive substrate and  

and d are the resistivity and thickness of the layer. 

Surface Conductivity 

Nascap-2k accounts for current flowing along surfaces. Current flows between insulating surface 

elements of a common material and with a common edge, for transport over a wide expanse of 

such material. The surface element to surface element conductivity is proportional to the length 

of the common edge and inversely proportional to the sum of the centroid-to-edges distances. 

For a surface element i having a common edge with j, Ri = (di/lij) , where  is the surface 

resistivity, di is the distance from the centroid of surface element i to the center of the common 

edge, and lij is the length of the common edge. The surface conductance across the edge between 

adjoining surface elements i and j is  

 Conductivity =
ji RR 

1
. (9) 

A surface can be grounded by a strip at an element edge (grounding edge) or by a circular contact 

located at a node (grounding node).  

Charged Particle Emission 

Nascap-2k also allows for the inclusion of the current from charged particle emission from a 

conductor (e.g., an electron gun). This capability is accessed by editing the script.  

2.1.5 Timescales 

Charged particles with energies below 50 keV penetrate less than a hundred microns into the 

spacecraft skin. While the time for the entire spacecraft to achieve net current balance is typically 
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several milliseconds, the time for each surface to achieve its own equilibrium potential is 

thousands of times longer. The development of differences between the potentials of different 

surfaces is referred to as differential charging.  

The rate of absolute charging is determined by the capacitance of the spacecraft to infinity, while 

the rate of differential charging is determined by the capacitance across the insulator layer. The 

rate of change of the potential on a sphere is given by  

 oo

JR

R

I

4

1

dt

d








 (10) 

where I is the current to the sphere, J is the current density to the sphere surface, and R is the 

sphere radius. For a 1-meter sphere and a net current of 1 A m
-2

, the sphere begins to charge at a 

rate of 100 kV s
-1

. As the sphere charges toward its steady-state (zero net current) potential, the 

net current decreases toward zero as electrons are repelled. Therefore, the charging rate decreases 

with time.  

The rate of change of the difference in potential across a dielectric layer is given by  

 o

Jd

dt

d






 (11) 

where d is the thickness of the layer. A 100 m layer with the same incident current density 

charges at a rate of 10 V s
-1

. In this representative example, differential charging takes place 10
4
 

times more slowly than absolute charging.  

2.1.6 Circuit Model 

Figure 2 shows a circuit diagram for a spacecraft with one insulating surface element and 

exposed conducting surfaces. The widely differing capacitances of surfaces to infinity, CA and CS 

and of the surface to spacecraft ground, CAS, make this a complex numeric problem.  

 
Farad10S
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where , d, and S are the dielectric constant, thickness (m), and surface area (m
2
) of the 

insulating surface element, and R is the radius of a sphere approximating the size of the 

spacecraft. The potentials as a function of time are computed using implicit time integration of 

the charging equations, which relate the derivative of the potential, , with time to the current, I.  
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CAS

VA

V=0

CS

CA

ISIA

Spacecraft
chassis ground

Plasma ground

VS

Insulating surface

All conductive surfaces
 

Figure 2. Circuit Model of a Spacecraft with One Insulating Surface Element 

The multisurface problem is solved by linearizing the currents and inverting the matrix. 

  ΦIΦC   (15) 

2.2 Material Properties 

The properties of the spacecraft surface materials determine the charging rates and equilibrium 

surface potentials. Nascap-2k uses the models of secondary electrons due to incident electrons, 

secondary electrons due to incident ions, backscattered electrons, and photoelectrons originally 

developed for NASCAP/GEO. [10]  

2.2.1 Secondary Electron Emission Due to Electron Impact 

Secondary electrons are those emitted from a surface with energies below 50 eV in response to 

energy deposited near the surface by incident electrons. Their energy distribution is usually 

peaked below 10 eV. The secondary yield, Yee, is the ratio of primary to secondary electron 

current. 

 
ee

emitted secondary current due to electron impact
Y

primary electron current
  (16) 

A typical curve is shown in Figure 3. 
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Figure 3. Electron Secondary Yield as a Function of Incident Energy 

The secondary electron emission yield can be calculated using the empirical formula [11]: 

 
 

R
x cos

ee
0

dE
Y C e dx

dx

     (17) 

where x is the path length of penetration of a primary electron beam into the material, R is the 

―range,‖ or maximum penetration length, and  is the angle of incidence of the primary electron. 

This equation is based on a simple physical model [12]: 

1. The number of secondary electrons produced by the primary beam at a distance x is 

proportional to the energy loss of the beam or ―stopping power‖ of the material, 

 
dE

S E
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 .  

2. The fraction of the secondaries that migrate to the surface and escape decreases 

exponentially with depth ( x cosf e  ). Thus only secondaries produced within a few 

multiples of the distance 1/α (the depth of escape) from the surface contribute significantly 

to the observed yield.  

The stopping power for incident electrons of energy E is related to the range of these electrons 

through the equation 

  (18) 

The usual formulation for the range is that it increases with the energy, E of the incident 

electrons in a way that approximates a simple power law [13]:  
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qR bE  (19) 

where q is a bit less than 2 for electrons with energy ≲ 300 keV. Because the primary beam loses 

energy as it passes through the material, E and S(Eo, x) depend on the path length x, where Eo is 

the initial electron energy. The stopping power can be written as 

 
 

1 1 1 q

o
dE dR 1 b

S E , x
dx dE qb R x

 
 

    
 

 (20) 

Figure 4 shows S(Eo, x) plotted against x for several values of Eo. Inspection of Figure 4 and the 

equation for S(x) illustrates the following points: 

1. S(Eo, x) increases with x, slowly at first, before reaching a singularity as x approaches R. 

2. The initial value of S(Eo, x) decreases with increasing initial energy Eo. 

Both of these observations are due to the decrease in electron-atom collision cross-section with 

increasing energy.  

 

Figure 4. Energy Deposition Profiles of Normally Incident Primary Electrons for Four 
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The yield is only sensitive to the details of the stopping-power depth-dependence for initial 
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the yield curve). For lower energies, R << 1/α, essentially all the primary energy is available for 

detectable secondary production, leading to a linear increase in yield with increasing Eo. At 
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Taking this into account, the stopping power can be approximated by a linear expansion in x, 

about x = 0. 

  (21) 

The simple power law does not adequately describe the available experimental data. The range 

has different exponents for low energy and high energy. A biexponential range law with four 

parameters b1, b2, q1, q2 fits the experimental data better. 

 
1 2q q

1 o 2 oR b E b E   (22) 

Figure 5 shows CSDA range values for Aluminum for energies from 20 eV to 100 keV. Note the 

drastic change in behavior near 300 eV. The biexponential formula 
7269.12335.0 E15.245E63.142R   fits well throughout the range plotted. 

 

Figure 5. CSDA Range for Electrons in Aluminum.  Low Energy Values (Blue Diamonds) 

From Ashley et al. (Reference 14). High Energy Values (Red Squares) From NIST ESTAR
*
 

Database. Dashed Line Is Biexponential Fit.  

For materials where no suitable data is available, a monoexponential form can be generated 

using Feldman’s empirical relationships [13], connecting b and n to atomic data.  
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*
 National Institute of Standards and Technology Electron STopping power And Range database available at 

http://www.nist.gov/pml/data/star/index.cfm 
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where W is the atomic or molecular weight of the material, Z is the atomic number, and ρmass is 

the mass density in gm cm
-3

. Then E is in keV and R is in angstroms. The stopping power is then 

obtained indirectly with the above equation. Theoretical estimates of the stopping power for a 

number of materials are available from Ashley et al. [14] Comparison of these values with those 

implied by the range data showed significant discrepancies, particularly for those materials fit 

using Feldman’s formula. The best approach is to fit the four parameters in the equation for R 

directly to the stopping power data. 

 
 1 2

1
q 1 q 1

1 1 2 2S q b E q b E


 
   (25) 

Burke et al. [15] propose a relationship between secondary emission due to electrons below 1 

keV and secondary emission due to higher energy particles, including gamma radiation from 

Co
60

. 

As is evident from equation (16), the secondary electron yield depends on angular distribution of 

the incident electrons. For low energy electrons, all the energy is deposited near the surface 

regardless of incident angle, so the yield is independent of incident angle. For high energy 

electrons the stopping power is constant in the near-surface region, so the yield is proportional to 

the path length near the surface, or inversely proportional to cos. It follows that the yield for 

high energy isotropic electrons is double that for normally incident electrons of the same energy. 

The isotropic yield curve makes a transition from being equal to the normal incidence curve at 

low energy to double at high energy. The maximum yield for isotropic electrons is somewhat 

higher than for normal electrons, and occurs at somewhat higher energy. 

2.2.2 Secondary Electron Emission Due to Ion Impact 

Secondary emission of electrons due to ion impact can be treated in a way similar to that for 

electron impact. The yield is given by  

 
 

d
x cos

ie
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dE
Y C e dx
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     (26) 

The stopping power is assumed to be independent of path length x over the thickness, d, of the 

sample. At low energies the stopping power is proportional to the velocity, and at high energies it 

is inversely proportional to the velocity [16]. 

  (27) 

Emax is the energy at the maximum in the yield curve. This is approximately 50 keV for most 

materials.  

As the CSDA range is at least comparable to the mean depth of secondary electron production 

for protons above 1 keV (140 angstroms of aluminum), we consider the proton yield to vary 

inversely with the cosine of the incident angle, so that the isotropic incidence yield is double the 
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normal incidence yield. This is usually an adequate treatment, because the ion fluxes are almost 

always low, and the effect of secondary emission is to mildly augment the ion flux, rather than 

canceling it as is the case with incident electrons. 

The secondary emission properties due to the impact of ions other than protons are assumed to be 

identical to the proton values for the same energy.  

The secondary electron yield curve for protons incident on aluminum is shown in Figure 6. As 

can be seen by comparison with Figure 7, the yield closely follows the stopping power. 
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Figure 6. Secondary Electron Emission by Aluminum for Proton Impact at Normal 

Incidence; Experimental Points as Indicated in the References [17, 18, 19, 20] 
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Figure 7. Stopping Power for Protons on Aluminum (from NIST PSTAR Database
†
) 

2.2.3 Backscatter 

Backscattered electrons are those emitted from the surface with energies above 50 eV. Their 

energy distribution is usually peaked close to the primary incident energy and they may be 

considered as reflected electrons. 

Nascap-2k uses a backscattering theory [21] based on that of Everhart [22] as extended by 

McAfee. [23] It assumes a single scattering in accordance with the Rutherford cross-section and 

the Thomson-Widdington slowing down law,  

   (28) 

(valid for most metals for E > 10 keV). For normal incidence the backscattering coefficient is 

given by 

  (29) 

where a is taken to be 0.0375 Z and where Z is the atomic number of the material. This 

expression matches the experimental data. 

The large-angle scattering theory, together with Monte Carlo data and experiments by Darlington 

and Cosslett, [24]  indicate that the angular dependence of backscattering is well-described by 

 
    o 1exp 1 cos        (30) 

                                                 
†
 National Institute of Standards and Technology Proton Stopping power And Range database available at 

http://www.nist.gov/pml/data/star/index.cfm 
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where the value of η1 is, within the uncertainty in the data, what would be obtained by assuming 

total backscattering at glancing incidence, η
1
 = –log η

o
. The net albedo for an isotropic flux is 

then 

  (31) 

As the energy is decreased below 10 keV, the backscattering increases. Data cited by Shimizu 

[25] indicate an increase of about 0.1, almost independent of Z. This component of 

backscattering can be approximated by 

  (32) 

At very low energies, the backscattering coefficient becomes very small and, below 50 eV, 

becomes zero by definition, as all emitted electrons are considered secondaries. This can be 

taken into account by a factor of 

 

 
1 E

H E 50eV log
log 20 50eV

   
   

  
 (33) 

where  is the Heaviside step function. The formula for energy-dependent backscattering, 

incorporating these assumptions, is then  

   

     
0.037ZE 5

o
1 E e 2

H 1 E H E 0.05 log H E 1 1
log 20 0.05 10 e

       
                       

 (34) 

where energies are measured in keV. 

2.2.4 Photoemission 

Photoelectrons are those ejected from the surface due to the solar ultraviolet radiation. Usually 

the quantity known is the yield, or number of electrons emitted for a surface normally exposed to 

the solar spectrum, at an ―earth distance‖ from the sun. The photocurrent from a surface exposed 

to the sun at an angle sun is given by the formula 

 
  sunsunphoto cosYexposed Areai   (35) 

This assumes that the yield per photon is, on average, independent of sun.  

A surface element is taken to be sunlit if its centroid is sunlit, i.e., if a vector from the centroid in 

the sun direction does not intersect any other surface element. 
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2.3 Surface Charging from Tracked Currents and/or Current Balance 

In short Debye length environments, such as encountered in low-Earth orbit, the orbit-limited 

approximation greatly overestimates currents of attracted particles. This occurs because 

potentials that decay faster than inverse square (sheath potentials) lead to an effective potential 

barrier to attracted charged particles when angular momentum is taken into account. Nascap-2k 

can compute the charging of spacecraft surfaces using tracked currents, either by themselves or 

in conjunction with analytically computed currents. Calculations of typical interest include: 

1. Floating potential and/or differential charging of a negative spacecraft, whose ion current 

may be enhanced and asymmetrized due to ram/wake effects. 

2. Floating potential of a biased spacecraft that has both ion and electron sheaths. The 

electron current may be additionally limited by magnetic field effects. 

3. Dynamic potential of a spacecraft with time-dependent bias. 

In ―Surface Charging‖ calculations with ―Tracked Ion and Analytic Electron Currents‖ 

(―Auroral‖ environment only), the analytic electrons are high energy electrons computed from 

the Fontheim formula. In ―Time Dependent Plasma‖ calculations, the optional electron thermal 

current is given by 

 

 th
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Aj exp if 0
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2.4 Potentials in Space 

Nascap-2k uses a finite element method to solve Poisson’s equation  x 2

o  for 

electrostatic potentials throughout space. Nascap-2k uses the variational form 
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. (37) 

The first term in the volume integrand corresponds to the Laplacian operator; the second term is 

the space charge contribution. As surface potentials are held fixed when solving for potentials in 

space, the surface term appearing in equation (36) is not used in the potential solution, but may 

be used later to determine the normal component of electric field (and thus the surface charge) 

for each surface element. 

The solution is subject to fixed potential boundary condition on the spacecraft surfaces and either 

zero potential or monopole potentials on the grid boundary. 

A number of models of the charge density are available to study different phenomena. 
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In the following, the symbol D  is the plasma Debye length and g is the plasma density reduction 

factor computed by geometric wake model (0<g<1).

Laplace. The Laplacian space charge option specifies that the charge density is zero and is 

appropriate for very low density plasmas. 

 o

0




 (38) 

i.e., charge exists only on object surfaces and external boundaries, as determined by the 

boundary conditions. ―Space charge‖ iterations may still be required, however, due to the 

treatment of surface electric fields. 

Linear (Debye Shielding). The Linear space charge option solves the Helmholtz or Debye-

Huckel equation. This model is very rarely used. 
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   (39) 

Nonlinear. The Nonlinear space charge model is appropriate for most low-Earth-orbit type 

plasmas. It accounts for space charge acceleration and convergence in a manner based on 

spherical collection (Langmuir-Blodgett [26] problem). Poisson’s equation is solved with space 

charge given by: 
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This model smoothly interpolates between Debye screening at low potential and an accelerated 

distribution with particle convergence at high potentials. The convergence factor is computed in 

terms of local information and problem parameters. The convergence model was developed by 

numerically solving the Langmuir-Blodgett problem for collection by a high-voltage sphere and 

fitting the result to an analytic form. An excellent fit was found with  

 
  509.0262.1

D
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sh 29.2rR


 E  (41) 

 
    232

sh 545.3,rRmin,C  E
 (42) 

where E is the local electric field.

 
Frozen Ion. The frozen ion formulation is intended for short timescale (typically sub-

microsecond) problems for which it is a good approximation to assume that ions remain 

stationary and at ambient density (―ion matrix‖ approximation), but electrons achieve barometric 

equilibrium. This approximation is intended primarily for negative potentials, for which the 

charge density is zero at zero potential and at negative potential (electrons repelled) the charge 
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density becomes positive and asymptotically reaches the ion density. For computational 

convenience we extend the charge density linearly to positive potentials, as an exponential 

increase in electron charge would be unphysical. 

)e1(ne /  0      (43) 




 ne   0      (44) 

Considerations for implementing this formulation stably on a coarse mesh are discussed in 

Section 3.4.5. 

Full Trajectory Ions. Ion densities are calculated from steady-state ion trajectories. Electrons 

are barometric. This approximation is used to model charge density for a moving spacecraft 

when current collection in the wake is important and the neutral wake approximation is 

inadequate—such as when high potential surfaces are in the wake.  
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Here, i is calculated by tracking ions. 

Plume Ion Density. Ion densities are initially computed from an imported plume map file. 

Electrons are barometric. The quantity o   is computed using the same formula as for full 

trajectory ions, where i is computed by summing the contributions from the thruster plumes 

instead of computed by tracking macroparticles. After the initial iteration, i is computed by 

summing the main beam contribution from the thruster plumes and the charge exchange 

contribution from generating and tracking charge exchange ions.  

Hybrid PIC. This algorithm is used for timescales (typically sub-millisecond) on which it is 

practical to treat ion motion, but electrons may be considered in barometric equilibrium. The 

total charge density is the sum of the ion and electron charge densities.  

 ie   (46) 

The ion density is computed from ion macroparticles that move in the local electric fields at each 

timestep. The electron charge density is given by 
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Full PIC. For this option, it is assumed that both the electron and ion-charge densities were 

stored during particle tracking. 

 
tracked  (48) 

2.5 Macroparticle Creation and Tracking 

Particle tracking is used to study sheath currents, to study detector response, to generate steady-

state charge densities, and to generate space charge evolution for dynamic calculations. The 

investigation of detector response is applicable in both tenuous and dense plasmas. However, the 

other phenomena are only applicable in plasmas with Debye lengths no more than the spacecraft 

size.  

In a dense plasma with high potentials the disturbed region is referred to as a sheath. The ―sheath 

surface‖ represents a sharp demarcation between a low potential exterior region containing 

neutral ―undisturbed plasma,‖ and a high potential interior region from which one species (ions 

for positive potentials; electrons for negative potentials) is excluded. 

In a dense plasma, the total current and its distribution over the spacecraft surface depend on the 

plasma environment, the surface potentials, the sheath structure, the spacecraft velocity, and 

ambient and spacecraft generated magnetic fields. For a large object (many Debye lengths in 

size) at low potential (at most, a few times the plasma temperature), Debye screening minimizes 

the extent of the object’s influence on the plasma. Because the sheath is ―thin,‖ the sheath surface 

lies near the spacecraft surface. The current attracted to each surface element is then given by its 

area times the plasma thermal current of the appropriate species. For an object (not necessarily 

large) at high potential, however, the extent of perturbed plasma is far greater. A first estimate of 

the sheath thickness is given by the Child-Langumir [27, 28] distance.  

 




en9
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D o

CL
 (49) 

The plasma thermal current then flows through an area much larger than the spacecraft surface. 

The current may be focused by the fields within the sheath, which affects the distribution of 

current over the spacecraft surface. This focusing causes the increase in space charge density due 

to particle acceleration modeled in the ―Non-Linear‖ space charge density model.  

Macroparticles are generated in the Particle Generation step of the script and tracked in the 

Track step of the script. Macroparticles can be generated at a well defined sheath surface, at the 

boundary of the computational space, throughout the volume of space, or at user specified 

locations. As macroparticles are tracked, their charge density in the volume elements they pass 

through may or may not be retained, depending on user choices. The current to any surface 

element hit by the macroparticles is retained. 

2.5.1 Generation of Macroparticles at Sheath Surface 

The attracted species diffuses across the sheath surface at a rate given by the plasma thermal 

current.  
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The current density to the sheath edge is computed by assuming the sheath to be a perfectly 

absorbing spherical surface.  

The charged particles constituting this current undergo motion consistent with the electric and 

magnetic fields inside the sheath. The sheath surface is taken as the equipotential surface at 

 = ±ln2. This choice is made because the attracted species is absorbed by the sheath, so we 

have only the inward moving component, comprising half the ambient density. The repelled 

species, whose density satisfies   expnn a , must also be at half the ambient density, 

leading immediately to the sheath potential. 

Macroparticles representing this sheath current can be generated and tracked to determine the 

current to the spacecraft and its distribution. The initial velocity is the average velocity of a 

charged particle crossing the sheath boundary. In the absence of spacecraft motion or a magnetic 

field, this is 
m

e2
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 in the direction of the local electric field. More precisely, for a sheath 

segment on the ram side 
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where the plus sign is for ions and the minus for electrons and vx is the component of the 

spacecraft velocity along the local electric field. In the absence of spacecraft motion and for a 

sheath segment in the wake,  
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With a magnetic field 
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where the drift velocity term 
2drift

B

BE
v


  is not included if it would make the argument of the 

square root negative. 

This model is appropriate for high potentials. When either the thermal distribution of particle 

velocities or the spacecraft velocity is important, macroparticles should be tracked from the 

boundary of the computational space. 
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2.5.2 Generation of a Thermal Distribution at the Computational Space Boundary 

There are two models for creation of macroparticles at the boundary of the computational grid. In 

both models, the plasma is assumed to be Maxwellian. The two models are inconsistent with 

each other and should not both be used together.  

Boundary Injection 

In the simplest model, macroparticles are created with charge equal to the plasma thermal current 

times the area times the time interval, q = jthAT, and velocity equal to 
m

e2




 normal to the 

boundary, so that they represent a density of n/2. These can each be split into eight outwardly 

moving macroparticles, to approximate a thermal distribution. The split macroparticles have an 

additional velocity of ±0.707 
m

e
 along each axis of a randomly generated coordinate system. 

The splitting is done in the plasma frame of reference in order to simulate the correct momentum 

and energy distribution for a drifting Maxwellian when transformed back to the spacecraft 

reference frame.  

Boundary 

In the other model, macroparticles that represent a specified fraction of the thermal distribution 

in each of the three spatial directions are created. At each boundary emission point, several 

macroparticles are created that sample the velocity distribution function in each of the three 

spatial directions. The user specifies which fraction of the distribution function each 

macroparticle is to represent and the code computes the range of velocities  z,y,x

2,1v  which would 

give the specified fractions, i.  
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Several macroparticles are created, each with velocity the sum of the average velocity of its 

fraction of the distribution and the ram velocity (negative of the spacecraft velocity).
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2.5.3 Generation of Macroparticles Throughout the Computational Space 

Initialization 

Macroparticles can be created throughout the computational space to represent a uniform 

distribution of charge. The weight of these macroparticles is decreased by any geometric wake 

factor. Each macroparticle can be split into eight outwardly moving macroparticles so as to 

approximate a thermal distribution. The velocities have components of ±0.707 me  along 

each axis in a randomly oriented coordinate system. The splitting is done in the plasma frame of 

reference in order to simulate the correct momentum and energy distribution of a drifting 

Maxwellian when transformed back to the spacecraft reference frame. 

Charge Exchange 

Macroparticles can also be created throughout the computational space to represent charge 

exchange current. Charge exchange ions are those created by a charge transfer collision between 

a fast ion and a slow neutral atom, such as occurs in ion thruster plumes. The current per unit 

volume associated with each macroparticle is the product of the charge exchange cross section, 

the neutral density, and the main beam ion current density. 

 jcex=ecexnneutralnbeamvbeam.  (56) 

Each component of the initial velocity is given by 
m

3448.0e2
 , where 0.3448 is 4000 K in 

electron volts and  is a random number between -1 and 1. 

The neutral density is the sum of the un-ionized propellant from the thrusters, the gas flowing 

through the neutralizers, and the background gas.  
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The contribution from each thruster is given by the solid angle subtended by the thruster grid, the 

flow rate and the temperature.  

 thruster

thrusterneutral

thruster

gridunionized

thrusters
e8

m
Flown








  (58) 

The contribution from each neutralizer is given by the flow rate, the temperature, the angle 

between the neutralizer axis and the line of sight from the neutralizer, and the distance from the 

neutralizer. 
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2.5.4 Particle Tracking 

Macroparticles are tracked until they leave the computational grid, hit a surface, exceed the 

number of allowed steps, or exceed the computational tracking time. They are tracked in the 

local electric field and the uniform magnetic field using a third order energy conserving 

algorithm. 

As the macroparticles pass through volume elements, their charge and/or current can be 

optionally saved to volume elements and nodes. This charge and/or current can subsequently be 

used in the space charge formulas to compute potentials in space.  

2.6 Geometric Wake 

The exclusion of plasma in the wake of a rapidly moving spacecraft is also important. That 

portion of the sheath surface that lies in the wake region has a reduced current passing through it. 

The volume of space in the wake has a reduced charge density. Conversely, on the ram side of 

the spacecraft, there is enhanced current and charge density. 

A spacecraft creates a wake when its velocity is comparable to, or larger than, the thermal 

velocity of the ambient ions. In low Earth orbit, the spacecraft velocity is 7500 ms
-1

. The thermal 

velocity of a 0.3 eV oxygen ion is only about 2000 ms
-1

. Thus the spacecraft travels a few of its 

own radii before ions can fill in behind it. The electrons fill in more rapidly. However, the 

density to which electrons can accumulate is limited by the space charge of the electrons already 

in the wake. Thus, except in regions where the density is extremely low, the electron density is 

only very slightly greater than the ion density.  

For each point in space, the wake module calculates what fraction of the thermal distribution of 

velocities, (in the spacecraft frame, a Maxwellian displaced by the spacecraft velocity vector) is 

not blocked by the spacecraft.  

The neutral wake density is given by  

 

     













 ddvvvf,xgxn 2

ioi  (60) 

where fio(v) is the unperturbed distribution function for a drifting Maxwellian, and g(x,) has 

value ―0‖ if a ray starting from x and going in the direction  would strike the spacecraft and ―1‖ 

if it would not.  

2.7 Plumes 

The ion density and velocity due to an ion thruster main beam can be read into Nascap-2k and 

displayed. Multiple thrusters (each with its own location and axis direction) can be specified, 

although at present all thrusters have the same type of plume. Neutralizers can be specified as 

well. The plume currents are used in the computation of the potentials in space (―Plume Ion 

Density‖ space charge model) and charge exchange currents. 
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2.8 Transverse Surface Currents 

The transverse surface current algorithm in Nascap-2k is used to calculate the current flowing 

along an antenna element or other object in response to time-varying applied potentials and/or 

active or passive current sources. The model accounts correctly for both local capacitance and 

incident plasma current. The change in charge on a surface element during a timestep is that 

which is needed to accomplish the change in surface electric field, which is obtained from the 

Nascap-2k potential calculation. The current to each surface element consists of the transverse 

surface current from neighboring surface elements and the current provided by the plasma, which 

is provided by the Nascap-2k particle-in-cell (PIC) simulation. The current continuity equation is 

solved using a pseudopotential approach. As a boundary condition, one surface element of each 

conductive element (i.e., surfaces associated with a given Nascap-2k conductor) is specified as 

connected to the biasing power supply, and the solution provides the required current. 

The basic equation to be solved is     
  

  
  , where J is the surface current density, and ρ is 

the surface charge density. Note that the solution for the current is non-unique to the addition of 

any divergence-free current field. We assume that, provided appropriate boundary conditions are 

implemented, such circulating currents are not of concern to the problem being solved. 

3 NUMERIC MODELS 

This section describes the numeric techniques Nascap-2k uses to implement the physics models 

described in the previous section.  

 The orbit limited currents are computed by integrating over the distribution function. An 

implicitized version of the Boundary Element Method is used to compute the evolution of 

surface potentials.  

 The finite element approach is used to solve Poisson’s equation for the spatial potential. 

Implicitization and charge stabilization are used for stability. The finite element grid uses 

strictly continuous electric field interpolants for accurate particle tracking.  

 Macroparticle tracking is used for computing surface and volume currents and volume 

densities. Macroparticle splitting is used for improved accuracy. 

3.1 Environment Integrals 

In section 2.1 we noted that the analytic current density to a surface at potential  is given by  
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where L is 0 for the repelled species and || for the attracted species, the ―+‖ sign is for ions and 

the ―-‖ sign is for electrons, f(E) is the distribution function at infinity, and F(E) is the flux at 

infinity.  

Below we describe how these integrals are done. 
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3.1.1 Maxwellian Currents 

The Maxwellian integrals are simple. 
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which for the repelled species simplifies to 
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and for the attracted species simplifies to 
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The average yield requires a numeric integral. 
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For the attracted species use the substitution 













E
expu  

 

  

 

  


















1

0

0

1

0

1

duulnulnY

duuln

duulnulnY

 (66) 

For the repelled species use the substitution 
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The numerator is calculated numerically using 200 points and Simpson’s integration. 

3.1.2 Fontheim Currents 

The Fontheim distribution includes both a Gaussian and a power law term. This distribution is 

only applicable for electrons.  

Gaussian Term 

The Gaussian integrals are slightly more complex than the Maxwellian. 
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Use the substitution 
gauss

oEE
u
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where L is now 
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The substitution  2uexpx   can be used to solve the remaining integral.  
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The average yield requires a numeric integral. Using the same substitution and definition of L we 

have 
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The integral in the numerator can be divided into three in order to isolate the peak at u = 0. If  

L > 0, then the first two terms are zero and  = L. 



 

27 

 

       




























duufduufduufduuf

LL  (72) 

The first and third terms can be evaluated using the substitution  2uexpx  . Then 

xlnu  , where the ―-‖ sign is used in the first term and the ―+‖ sign in the third. Under the 

assumption that  is small, symmetry can be used to write the second term in terms of the error 

function. The numerator can be written as 
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Power Law 
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Using the substitutions x = E- and then z =x
-(-1)

 and z =x
-

 we get 
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The same technique is used to evaluate the average yield. 
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3.1.3 Kappa Distribution Currents 
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which for the repelled species simplifies to 
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for  > 1. 

For the attracted species the integral requires a substitution.  
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The average yield requires a numeric integral. 
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Use the substitution 
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where 
oE

1L



 for the repelled species and 1L   for the attracted species. 

Then use the substitutions y = u
-1

 and y= u

 for an even distribution of points. 
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where 
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1L for the repelled species and L1 = L2 = 1 for 

the attracted species. 

3.1.4 Convected Maxwellian Currents 

As the convected Maxwellian distribution depends on the velocity of the plasma with respect to 

the spacecraft and the angle between the bulk plasma velocity and the particle velocity, the full 

angular integral is needed.  

   )(f)n̂(vdq),,n̂(jj s

3

ss vvU
 . (83) 

The coordinate system is shown in Figure 8. 
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Figure 8. Coordinate System Used for Convected Maxwellian Environment, in Spacecraft 

Frame 

Written as an integral over the velocity at infinity, v∞, we have 
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where the lower velocity limit L=0 for an attractive potential and 2 otherwise, and  is the 

angle between the flow vector U and the incident velocity at infinity v that is dynamically 

mapped to the incident angle  and is given by 

 
  cossinsincoscoscos uu . (85) 

where u is the polar angle of the flow velocity vector and ∞ is the polar angle of v∞. With this 

substitution, the azimuthal integrand has the form
‡
 exp(-a cos()), and noting that the zero

th
-

order modified Bessel function of the first kind I0 is given by 

 





2

0

cosa

0 ed)a(I2

, (86) 

we can write the current as  
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The velocity and polar angle integrals are performed numerically. The angle and magnitude of 

the flow velocity vector (defined in the spacecraft frame) are specified by the user, and the angle 

                                                 
‡
 The evenness of the (even-order) Bessel function swallows a minus sign here. 
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at infinity θ∞ is obtained from orbit relations in a 1/r potential, as a function of the total energy 

2

v
E

2

  and launch angle θ. From reference 1 we obtain
§
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Measuring orbital angles from the polar axis that is normal to the sphere at the launch point and 

setting a = r determines the angle o 
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Setting r = ∞ gives 
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In the limit as U0 we recover the expected isotropic/uniform flux density, while as the Mach 

number increases the flux approaches a cosine dependence on relative particle angle. [30]  

For full consistency, the secondary electron emission current due to ion or electron impact and 

the backscattered current due to electron impact would be given by 
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As this is a time consuming calculation and electron Mach numbers are always under 1, we 

compute the yields due to incident electrons using an isotropic Maxwellian distribution.  

 
incident
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emaxwellian
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e jYj 
 (92) 

The secondary emission due to ions is computed using the full angular integral.  

The effective density of each component is the expectation value of the distribution function. The 

techniques used to compute the average values of the square root of the inverse of the energy are 

the same as used to evaluate the current integrals above. 

                                                 
§
 Starting from Goldstein eqn 3-46, substitute angular momentum l = r x p = r m v sin(), potential energy  = k/r, 

and 1/2mv
2
 = E + , then for a launch radius r = a). 
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3.2 Implicit Charging Using the Boundary Element Method 

Among the difficulties of developing accurate and robust algorithms for spacecraft charging has 

been the inability to calculate electric fields accurately, let alone to predict how electric fields 

will change as a result of surface potential changes. Nascap-2k uses the Boundary Element 

Method (BEM) [31] to calculate accurate electric field and as the basis for implicit charging 

equations. 

3.2.1 Boundary Element Method Algorithm 

The Boundary Element Method is a means for relating fields and potentials in a region to sources 

on the boundary of the region. It is comparable to a sum over the coulomb field of all the charges 

in a region rather than an iterative field solution. In our case, the region is the space exterior to a 

spacecraft, and the boundary is the spacecraft surface. Also, we assume the ―free space Green’s 

function‖, i.e., the potentials in the region obey Laplace’s equation. 

The sources are sheets of charge coincident with the spacecraft model’s surface elements. We 

assume that each surface element, j, has a constant charge density, j. The familiar relation for 

the potential of a point charge then generalizes to an integral over the object surface: 
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where i, which could be the potential at any point in space, is considered the potential at the 

center of a surface element. Similarly, the familiar relation for the electric field of a point charge 

generalizes to: 
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where Ei is the electric field at some point in space, the point again taken at the center of a 

surface element. 

We express the relations of potential and electric field to charge density as matrices: 

 
  jij

1

i C  
            jiji)(  FnE  (95) 

These can be combined to obtain a relation between normal electric field and voltage: 

 
  jkjiki VCFnE   (96) 

This last relation is the key to developing relations between surface charge, surface potential, and 

surface currents in order to derive charging equations. 
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3.2.2 Doing the Integrals  

To get C
-1

 we need to do integrals of the form 
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There are tricks to doing these integrals, which can be found in the literature. Denote the field 

point, ri as P, and take the domain of integration as triangle ABC. Then, the vector from the field 

point to anywhere on the triangle can be parameterized as 

 
uvBCuABPAij r  (98) 

where PA, AB, and BC are vectors between pairs of points, and u and v are parameters, each in 

the interval [0,1]. The square of the distance, rij, then becomes 
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where the coefficients Tkl are formed from pairwise scalar products of the three vectors above. 

Now, the integral can be expressed as 
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where the Vi coefficients are functions of v. 

The inner integral (over u) may be found in standard integral tables [32] 
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We are left to do the outer integral (over v) numerically. To facilitate this, we select the vertex A 

such that the scalar product PABC is the minimum of the three choices. Then, very few 

integration points are needed in the outer integral (over v). (We use a 5-point Simpson’s rule in 

the current implementation.) 

The integrals for the electric field are similar, although there are more of them. The same 

techniques apply. 
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3.2.3 Test for Accuracy 

We tested the algorithm for accuracy by calculating the electric fields on the surface elements of 

a uniform potential sphere. The sphere model in Figure 9 was originally defined using Patran, 

and has 90 surface elements and 92 nodes. It provides a fairly coarse mesh over the surface of 

the sphere. 

 

Figure 9. Sphere Defined Using Patran 

The next figure shows the result of the BEM calculation. Note that the total variation of electric 

field over the surface is only three percent. Also, the apparent radius of the sphere (given by V/E) 

is within three percent of the nominal radius. 
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Figure 10. Normal Component of Electric Field at Surface of Sphere as Computed Using 

the BEM Approach 

By contrast, the same calculation using Nascap-2k’s finite element algorithm with higher order 

elements gives an electric field variation of seven percent, and a value of electric field that is 

about fifteen percent high. A finite element algorithm with linear elements gives an eight percent 

variation, and a value that is about twenty-five percent high.  

3.2.4 Implicit Charging 

To develop charging equations we need to express physical charges on physical surfaces in terms 

of the voltages on the same objects. We can then proceed to calculate what voltage changes will 

be produced by changes in charge (currents). Because the interior of a spacecraft is NOT free 

space, the physical charge densities bear no relation to the ’s, which we have now eliminated 

from the calculation. 

To get the physical charges we use Maxwell’s divergence equation in the form  = D. Figure 

11 shows the ―Gaussian pillboxes‖ used to calculate the actual surface charges on insulating 

surfaces and on conductors. 
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Metal

 

Figure 11. “Gaussian Pillboxes” Used to Calculate the Actual Surface Charges on 

Insulating Surfaces and on Conductors 

For an insulating surface (upper pillbox in Figure 11), the external field is En, which we obtain 

from the BEM solution. The internal field is related to the capacitance between the insulating 

surface and its underlying conductor. Thus, the total charge, qi on such a surface is given by: 

 
   ciiciii CAq  nE

 (102) 

where A is the surface area. For a conductor, since charges are mobile, it is not useful to know 

the charge on each individual surface, but we need to work with the total charge on the 

conductor. Conducting surfaces include the obvious ―bare‖ surfaces (lower pillbox in Figure 11), 

as well as the surfaces that underlie the insulating surfaces (middle pillbox in Figure 11). In both 

cases, we have zero electric field internal to the metal. To obtain the total charge on all the 

surfaces of the conductor, we need to sum the external-field charge terms for the bare conducting 

surfaces, plus the capacitive-charge terms for the insulator-metal interfaces:  

 

    
insulators

ciic

bare

iic CAQ nE

 (103) 

We previously found the BEM expression for the external fields in terms of the cell potentials: 

 
  jkjiki CF nE  (104) 

Substituting this into the equations for qi and Qc, performing the indicated sums, and adding the 

capacitive terms, we get the matrix equation: 

 Q=G (105) 

where the vectors are composed of contributions from all the insulating surfaces and a single 

term representing all the bare conducting surfaces. 

 Q = {q1, q2, … ,qn, Qc} (106) 

  = {1, 2, …, n, c} (107) 

where Q and  only contain entries for those entities physically capable of accumulating charge, 

viz., conductors and insulating surfaces, and the charges and potentials are related by the 

charging matrix, G. 
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We are looking for an equation that relates currents to voltage changes. So, we differentiate the 

charge equation in time: 

 ΦGQI    (108) 

Discretize to a finite time interval: 

     tttt ΦΦGI   (109) 

Implicitize by evaluating current at the final time (also, for simplicity, changing [t+t,t] to [t,0]): 

       0ttt ΦΦGI   (110) 

Linearize currents with respect to voltage (since we do not know the final voltages at which the 

current is to be evaluated): 

         0t0t  III  (111) 

And, solve the equation: 

          t00ttt IΦIGΦIG   (112) 

This gives us a straightforward matrix equation. Everything on the right-hand-side is known, and 

we can solve using standard linear algebra equation solver packages. 

Before proceeding to examples, it is worth commenting on the derivative of current, 

jiij I I . 

Consider three cases: 

1. For current sources such as incident plasma current, we usually approximate the current 

as a function of the local voltage only. This gives a diagonal term in ijI . Since such 

currents decay exponentially, some care must be taken not to underestimate the change in 

current if the voltage is changing in such a direction that a component of current is 

increasing (i.e., electron current for a surface whose potential is increasing (toward zero) 

from a large negative potential). 

For example, suppose we have  e1)(I and (0)=-2. The implicit solution for 

(t) is 
)tI1(

t))0((I)tI1)(0(
)t(




 . If we use the actual derivative   0expI  we 

obtain the upper curve in Figure 12, which works satisfactorily for sensible timesteps like 

0.1 or 1, but overshoots the solution   0  badly for long timesteps like 10 or 1000. 

However, if we recognize that zero is a value we wish not to overshoot and accordingly 
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set 
)0(0

))0((I)0(I
I




 we obtain the lower curve in Figure 12, which gives equally good 

results for short timesteps and does not overshoot the solution, even for a timestep of 

1000. 

 

Figure 12. Example Problem Solutions for Short and Long Timesteps for Two Choices of 

Current Derivative 

2. Conductivity current, such as Ii = (c-i), contributes off-diagonal as well as diagonal 

terms to the current derivative matrix. 
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 . Surface conductivity 

contributes many more off-diagonal terms. 

3. The case that is particularly problematic is Ii = Ii(E·n). This occurs for a photo-emitting 

surface at negative potentials. The problem is that the local electric field is a function of 

the potentials on all the surfaces. However, the BEM provides us with exactly that 

function. We can now compute the term 

 jiiijiij EEIII   (113) 

using the relation  

 
  jkjiki ΦCFnE   (114) 

derived from the BEM. 

In Nascap-2k we impose some additional conditions on the current derivative in order to promote 

stability, some of which are related to the sharp cutoffs that can occur with secondary and 

photoemission currents: 

1. If a surface is at positive potential and has positive current before any limiting of low 

energy emitted currents, then the derivative is set so as to fully turn on the secondary and 

photoemission currents with a potential drop of no more than 2.5 V. 

-2

-1

0

1

2

3

4

5

0.1 1 10 100 1000

So
lu

ti
o

n
 V

(t
)

Timestep

Actual Derivative

Finite Difference



 

39 

2. If a surface is negative but has positive current and normal electric field, the current is 

turned off after rising to a potential of no more than +5 V. 

3. The current derivative is set to allow a potential change of no more than 2 kV. 

4. The current derivative is set to allow a potential change of at least 1 V.  

3.2.5 Example: Sunlit Sphere 

To illustrate the implicit charging model, we calculate the charging of a sunlit Teflon sphere in a 

1 cm
-3

, 20 keV plasma. The NASCAP/GEO version of this was published in 1978. [33] A version 

of the original result is shown below in Figure 13. The dark side of the sphere gradually charges 

negative due to incident plasma electrons, while photoemission grounds the sunlit side. The sun 

direction is (1,1,1) (from the upper right). Eventually, however, the strong negative potentials due 

to the dark surfaces wrap around the sphere and form a barrier to photoelectron escape. The 

potential of each sunlit surface is subsequently determined by the condition that its electron field 

has a small, positive value (too small to be seen in Figure 13), so that just the right fraction of 

photoelectrons can escape over the barrier. 

 

Figure 13. Potentials About Sunlit Qsphere in Space as Computed by NASCAP/GEO 

Figure 14 and Figure 15 show the BEM solution for a PATRAN sphere and a QSphere 

respectively. The subsolar point is the least negative point. 
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Figure 14. Potentials on Sunlit PATRAN Sphere in Space Viewed from Direction (1,2,3) 

 

Figure 15. Potentials on Sunlit Qsphere in Space Viewed from Direction (1,2,3) 

Figure 16 is another view of the BEM solution, showing more of the dark side. Despite the fairly 

coarse gridding on the sphere, the gradual potential gradient on the sunlit side and the constant, 

large negative potential on the dark side are clearly seen in the BEM solution. 
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Figure 16. Potentials on Sunlit PATRAN Sphere in Space 

3.3 Finite Element Method to Compute Potentials in Space 

In calculating the potential in three dimensions around an arbitrary object, Nascap-2k employs a 

finite element approach using right parallelepiped elements and nonlinear edge interpolants. 

Arbitrarily nested subdivision (up to seven levels) is used to resolve important object features 

while including a large amount of space around the spacecraft for determining accurate particle 

orbits and keeping memory requirements reasonable. Figure 17 shows an example of a 

computational grid with progressively finer subdivision to give fine resolution near an 

experiment. 



 

42 

 

Figure 17. Computational Grid with Subdivision  

Nascap-2k solves Poisson’s equation  

 o

2 
 

by solving the associated variational principle 
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The first term in the volume integrand corresponds to the Laplacian operator; the second term is 

the space charge contribution. The surface contribution, given by the last term, is used to obtain 

the surface electric field. 

Poisson’s equation is solved with surface potentials fixed. To determine surface field values for 

fixed potential elements, we use the fact that the surface element electric field is conjugate to its 

potential, i.e., when the full conjugate gradient matrix multiplication is performed, the surface 
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element electric field (corresponding to the existing potentials and fields) is the residual 

corresponding to the surface element potential. This is an improvement over capacitance matrix 

methods in that it takes full account of the nonlinear space charge in the external space. In the 

variational calculation, we use locally defined basis sets, that is, interpolants within each cubic 

volume element. Fine mesh volumes are given the correct variational weight, ensuring the 

maintenance of accuracy through mesh transition regions. The potential and electric field are 

defined at each grid node. The potential inside each volume element is interpolated from the 

values at each of its vertices. 

The volume integrals are solved volume element by volume element. The potential (and electric 

field) at each point in the element is the sum of interpolants times the values at the nodes.  
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The potential inside each element is given by  
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where ―i‖ are the nodes of the element indexed by ―e‖, and the Ni are the interpolants. Note that 

each element has four interpolants per node, whose coefficients are the potential and three 

components of electric field at the node, as discussed in Section 3.3.1. 

We then have  
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which allows us to write 
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Where the indices (α,β) run over the potential and three electric field components at the nodes 

and their corresponding interpolants. Note that the Wiαjβ depend only on the shape of the volume 

element.  

The second term can be written 
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The minimization can then be written as the matrix equation 
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This function is then expressed in terms of the vector, φ, of all nodal values and a sparse, 

symmetric, positive definite matrix W. The conjugate gradient solution to this problem requires 

that we be able to form the matrix-vector product Wφ, which we can do by adding up the 

contribution to Wφ from each finite element without ever forming (or storing) the sparse but 

extremely large matrix W.  

The resulting system of linear equations is solved using the Conjugate Gradient approach.  

3.3.1 Continuous Field Interpolants  

Nascap-2k uses a finite element interpolation scheme that has strictly continuous electric fields. 

This approach insures the continuity of the electric field used to compute particle trajectories. 

Triquadratic interpolants were also considered, but experience showed that the difference in 

weight between the corner nodes and the edge-center nodes leads to a poorly conditioned matrix.  

The basic interpolation functions consist of functions that have unit value and zero slope at their 

home nodes, and zero value and slope at opposite nodes:  
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and functions that have zero value and unit slope at their home nodes and zero value and slope at 

opposite nodes:  
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The coefficient of F corresponds to the potential at the home node, and the coefficient of G 

corresponds to the (negative of the) electric field at the home node. (In the element interior, both 

F and G are needed to calculate potential and potential gradient.) 

The functions F0 and G0 are shown in Figure 18. It can be verified that these functions can 

exactly reproduce constant, linear, and quadratic potentials.  
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Figure 18. Interpolation Functions Fo and Go 

We generalize to three dimensions by assigning to each corner of the unit cube four interpolation 

functions corresponding to the potential, x-component of potential gradient, y-component of 

potential gradient, and z-component of potential gradient for that node. The interpolants 

corresponding to node ijk are then given by 
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The coefficients of the N
0
 interpolants are the node potentials, and the coefficients of the N

1,2,3 

interpolants are the negative Cartesian components of the nodal electric fields. We elect to omit 

the higher order terms of the form GFG or GGG. 

The potential inside each element is given by  
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and the components of the electric field are given by 
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ijkijk z,y,xNz,y,xE  (126) 

3.3.2 Interpolating Potentials and Fields for Special Elements  

Special elements are those elements which contain surfaces. Because surface-containing 

elements are not empty cubes, the potential interpolation functions described in the previous 

section cannot be straightforwardly applied. To develop finite element matrices for these 

elements, we require a prescription for calculating the potential and electric field in the element 

interior. Note that a ―special element‖ is bounded by three types of surfaces: (1) square surfaces 
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bounded by grid edges and shared with adjacent (presumably empty) elements; (2) object 

surfaces; and (3) surfaces bounded by both object points or edges and grid points or edges. On 

type (1) surfaces we use the potential and field interpolation described in the previous section. 

On object surfaces, the potential and electric field must be expressed in terms of the object’s 

surface element potentials and normal fields. Type (3) surfaces must smoothly blend between the 

two. We describe below an algorithm to express the potential and field at any point in the 

element volume in terms of the grid point potentials and fields, and the surface element 

potentials and normal fields. The algorithm has the property that, when applied to an element 

with six type (1) surfaces, it reproduces the empty cube result exactly.  

Let R be a point in a volume bounded by a set of surfaces {S}, each of which may be a triangle 

or a planar convex quadrilateral. For a given S, let P be the point on S nearest R, let (P) and 

E(P) be the potential and electric field at P, and n be the unit normal (from the surface point P 

into the volume) to the surface. Let  
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where AS is the area of surface S and KS is its weighting function.  

Let l be the distance from P in direction n to the next surface intersection. (In practice, it is 

adequate to extend l to the intersection with the surface of the rectangular parallelepiped 

bounding the volume.) Then the contribution of S to the potential at R is 

 
 ))(l)(/()()/()( nE(P)ndndPR  1NKSS  (128) 

and the total potential is found by summing the contributions from all surfaces.  

The electric field is found by differentiating the above. The contribution of S to the electric field 

is  

 
   )()l/21()()N/K()K/)KN/N SSSSS nE(P)nndPE 

 (129) 

Where )(P  is taken tangential to the surface, and is calculated using the continuous field 

interpolants of S is a full square in empty space, and otherwise using linear interpolation for 

triangles and bilinear interpolation for quadrilaterals. 

This approach allows us to interpolate surface fields and potentials on bounding surfaces in a 

manner that maintains the continuous electric field property. Potentials and normal field 

components are defined at the centroids of the original object surfaces and area-weighted 

averaged at surface corners. Potentials, normal fields, and tangential field components at all 

surface points that are vertices of bounding surfaces are expressed as linear combinations of 

centroid potentials and fields.  
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3.3.3 Boundary Conditions 

Most often we use a zero potential boundary condition at the outer boundary of the 

computational grid. For some problems, specifically, laplacian potential and linearly Debye 

screened potentials, a different approach is desirable. For these problems, we apply boundary 

conditions by extending the problem beyond the computational box using external elements 

whose inward boundary is a quarter-boundary-surface-element (QBSE) containing one problem 

node and which extends radially outward from the center of the computational box (to which we 

henceforth refer as ―the origin‖). (See Figure 19) These elements are added to the sum overall 

volume elements. We ignore potential variation over the QBSE, assuming it to have the potential, 

node, of its problem node, so that this element makes a diagonal contribution to W. Within that 

approximation the new external element subtends solid angle Ω=¼x/R
3
, where the QBSE is 

normal to the x-axis at distance x from the origin, and R is the distance of the center of the QBSE 

from the origin. (R and x are measured in outer grid units.) The potential in the element is 
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for Debye length D. We can now proceed to evaluate the needed integrals. For the laplacian 

(D=) case we get 

 

  















 



R

2

2

22

node2
12

r

R
drrdV

2

1

 (131) 

so that after properly taking account of the mesh spacing, L, the external element’s contribution 

to the matrix element is 
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where x and R are measured in units of L. 

 

Figure 19. An Extended Element with Analytically Extrapolated Potential Is Appended to 

Each Boundary Quarter-Square to Implement Non-Zero (Monopole) Potential Boundary 

Conditions 
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For the case of finite Debye length evaluation contains more terms and involves integrals that 

cannot be expressed in closed form, so we approximate 
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to eventually get 
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where ρ=R L/. 

It is recommended that zero potential boundary conditions be used if  is comparable to or 

shorter than an outer grid mesh unit, and for most particle tracking problems for which no clear 

value exists for the Debye length. 

3.4 Space Charge Stabilized Poisson Iteration  

Poisson’s equation can be written dimensionlessly as 
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where  
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 is the dimensionless Debye length, No is the ambient plasma density, ni = Ni/No, ne = Ne/No, 

and the Laplacian is also normalized by L
2
.  

The traditional approach to the solution of equation (132) has been an explicit iteration of the 

form 
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e

1

i

22 nn  
 (137) 

where  is the iteration index and the charge density is determined using the potentials of the 

previous iteration. This method can be shown to be unstable
2
 when the Debye length, D, 

becomes small with respect to other scale lengths of the problem. This can be understood by 

considering that a smooth potential variation over a distance of, say, 1000, would require a 

smooth 2
 which is, in turn, given everywhere by the charge density. Maintaining a smooth 

charge density distribution is difficult when any errors in determining (ne - ni) are multiplied by a 

huge 
-2

. There is one effective remedy to this dilemma described in Parker [34], but the process 

reported here appears to be more efficient in the short Debye length limit. This method involved 
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the combination of two concepts. One uses a partial implicitization of the repelled density. [35] 

The other simply reduces the charge density to an acceptable level whenever the first method is 

inadequate. An ―acceptable level‖ means a value not so great that it will cause spatial oscillations 

in the potential. 

3.4.1 Implicitization 

The right hand side of Equation 133 is the dimensionless charge density. 

 
       2

i eq , L n n       r r
 (138) 

The charge density at the present iteration may be linearized about the previous potential 

iteration 

 
      1 1 1q q q          

 

where 





q
q , and the r dependence has been dropped for clarity. With this expression, we may 

write the implicit Poisson iteration scheme 

 
     2 1 1 1 1q q q               

 (139) 

Though it is not immediately obvious, the implicit character of Equation 135 makes it more 

stable than scheme (133) provided q  is constrained to be non-negative. This can be understood 

by realizing that in Equation 133 the charge density is treated as an independent variable, 

whereas in Equation 135 the charge density is determined simultaneously with the potential. 

The finite element approximation to Equation 135 produces the matrix equation 
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where (e) refers to each element and S is derived from q by the following analysis. 

3.4.2 Charge Limiting 

For ≥ 1, S is simply the total charge associated with each node, q. (Physically, this means that 

an entire grid cube of plasma with one species eliminated alters the potential by no more than the 

temperature.) However, for L<< 1, numerical noise and features like a sheath edge, which may 

span only a few D, become incorrectly amplified when the q determined at a point becomes 

multiplied by the entire nodal volume. When it is not possible to reduce the volume element size, 

stability can be preserved by replacing Q (and Q΄) with a reduced value S, (and S΄) which is 

calculated to be the maximum allowable charge for the element.  
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Because of the artificial amplification argument, S is often the more realistic total for an element, 

in the sense that it produces potential variation appropriate to the spatial resolution rather than 

causing unphysical overshoots. Before deriving S, we define the barometric potential Фb = ln(ni), 

which (in cases where electron density is governed by the Boltzmann factor, e
Ф
 is the potential 

for which Q = 0. For the ―Linear‖ and ―Non-linear‖ space charge density formulations, the ion 

charge density is also dependent on the potential. For these cases, the barometric potential as 

used here is zero, Фb = 0. Note that it is important that S→ Q as Ф→ Фb if quasineutral regions 

are to be modeled correctly. To determine S, consider a capacitor with potential difference Фb – 

Ф, area L
2
, and a separation of L. The charge qc on this capacitor is given by  

 
  


 e

Le

L
VCq b

2

o

c

 (141) 

In the units of our previous q, qc becomes 

 
 Limit bq    

 (142) 

which is the maximum allowable charge per element, with the parameter , set to the maximum 

value consistent with the stability of the Poisson solver. Thus at each node, we choose for the charge 

 
 LimitS min q , q

 (143) 

with 

 

Limit, for S q

S q
, for S q

 


  
  (144) 

The way in which S and S΄ are computed for each charge density formulation appears in Section 

3.4.5 below. 

The effect of this algorithm is as follows: If a problem has been specified where a boundary 

potential would be screened in less than an element or two (the limit of any code’s resolution), 

sufficient sheath charge is redistributed to allow the potential to be screened over the minimum 

number of elements that is consistent with stability. 

3.4.3 Analysis of the Space Charge Stabilized Poisson Method 

The charge stabilized Poisson method calculates for each node the maximum allowable charge 

that is consistent with the stability of a linearly interpolating Poisson solver. This method is 

developed above, but a further analysis is presented here to help the user interpret its impact. 

Nascap-2k’s charge stabilization is accomplished through the process of charge limiting, 

illustrated in Figure 20. This figure shows two charge versus potential curves for the case where 
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the ion density is fixed (tracked or equal to the background density) and the electron density is 

barometric. Equation 135 is rewritten as 

 
  m bq exp exp exp     

 (145) 

where  22

Debyem Lln    is user specified and b is the barometric potential, Фb = ln(ni). 

For curve q1, Фb = -3.0 (ni = 0.05); for curve q2, Фb = 0.0 (ni = 1.0) and for both curves Фm = -

2.2, and  = 1. For each curve, the limiting charge as given by Equation 138 is also shown. The 

limiting charge is rewritten here as  

 qLimit =  (b –) (146) 

which intersects the ―natural‖ charge curves at Фc and Фb. The charge stabilization method 

reduces the charge to the limiting value when Ф > Фc and uses the natural charge for Ф < Фc. 

The parameter Фm provides a good measure of the limiting process. From Figure 20 it can be 

seen that Фm is the point at which the slope of the natural charge curve equals that of the limiting 

charge line. Figure 21 shows a family of curves giving the dependence of the cutoff potential Фc 

on the barometric potential for various values of Фm. These curves were obtained by numerically 

solving for the zeros of the difference between q and qLimit. This difference equation always has 

two solutions, one at Фc and one at Фb, with the exception of a degeneracy at Фc = Фb = Фm, 

which is indicated in the figure. This figure shows that the charge limiting is minimal for Фm > -1, 

and quite severe for Фm < -6 or so. 
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Figure 20. Plots of Space Charge (Curves Q1 and Q2) as a Function of Potential as Given by 

Equation 135. The Straight Lines Represent the Maximum Allowable Charge for Non-

Oscillatory Potentials. The “Natural” Space Charge, Q1 or Q2 Is Acceptable for Which 

Slopes of the Curves and the Corresponding Line Are Equal. 

 

Figure 21. Plot of the Space Charge Cutoff Potential, Φc, Versus Barometric Potential (Φb = 

Ln Ni) for a Series of Φm Values (-02, -0.5, -1.0, -2.0, -3.0, --4.0 … -11.0) – the Point at 

Which Φm = Φb = Φc Is Also Indicated 
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3.4.4 Sheath Boundary Potential 

Space charge limiting must be accounted for when choosing the sheath boundary potential. 

Space charge limiting limits the rate at which space charge can cause the potential to drop.  

Consider the first volume element of a sheath to satisfy the laws of Child and Langmuir (planar 

space charge limiting). At the sheath edge (z=0) and one element in (z = L) the potential and 

electric field are given in Table 1. 

Table 1. Potential and Electric Field Variation Given by Planar Space Charge Limiting 

Position  0 L 

Potential  0 K(L)
4/3

 

Electric field 0 (4/3)K(L)
1/3

 

 

By Gauss’s law, the charge per unit area in this element is given by 
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Nascap-2k computes the charge density to be limited by (/L
2
) times the mean potential 

(assuming linear interpolation), and so gets 
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Equating these two expression gives  = 8/3. 

Because of the requirements of disk space and computational time of three-dimensional codes, 

Nascap-2k is frequently operated at high Фm values, i.e., a coarse mesh with respect to the Debye 

length. In these cases charge is removed at almost all points. Ideally, the charge that was 

removed was excess charge generated by the coarse gridding. This is the artificial charge 

amplification argument. However, since Nascap-2k must be reliably stable, the result is that too 

much charge is often removed. This results in an enlarged sheath thickness for high negative Фm 

problems. In order to compensate for this sheath enlargement, the sheath boundary potential must 

be adjusted.  

Equating the above equation to the code resolution, L, gives 

     34

D

3231346

x L74.0nL101.5  (149) 
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The potential x may be interpreted as the potential below which Nascap-2k underestimates 

screening. At best, beyond the x contour, the potential drops about one order of magnitude per 

element. For θ = 0.1 eV, n = 10
11

m
-3

, and L = 0.2 m, we find x = 6 V. If the 6 V contour is 

correctly placed, the 0.6 V contour lies at least one element beyond (at the approximate sheath 

location), and the default sheath contour (0.07 V) is yet another element farther. This would 

produce a sheath area that is too large. The suggested criterion for the sheath boundary potential is 

 
 xSB 24.0,2lnMax 

 (150) 

where 0.24 = e
-1.0/0.7

 is the planar screening per element allowed by Nascap-2k. Note, however, 

that x depends strongly on the grid in which the sheath is found, so that if an increase in object 

potential moves the sheath from grid 3 to grid 2, a corresponding larger value of SB should be used. 

3.4.5 Charge Density and Derivative in Nascap-2k 

Nascap-2k has a selection of eight different expressions to describe the charge density for 

different kinds of problems. Each expression uses implicitization and charge limiting to a 

different extent. As there is no space charge for the Laplace space charge option, the following 

discussion does not apply to that case. The expressions used for the space charge and its 

derivative including limiting are listed below. 

The parameter D is the local mesh spacing, L, divided by the user provided Debye limiting 

value, which defaults to 2. The parameter g is the maximum of plasma density reduction factor 

computed by neutral wake model (0<g<1) and 10
-6

. The basic strategy in the formulations below 

is that Debye length analog, λ, defined by 
2

0









 , must be no greater than D. 

To see the relation between L, D, and λ, consider the solution of the Helmholtz equation in a 
single, linear zone. The variational principle for the Helmholtz equation is 
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The squared-gradient term is minimized by a constant potential, whereas the squared-potential 

term is minimized by going symmetrically through zero. So, there must be some minimum value 

of λ for which the solution does not change sign. Minimizing the variational function on the 
interval [0, 1] with respect to ϕ(1) when ϕ(x) = (1-x) ϕ(0)+x ϕ(1) gives 
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so that the condition for non-oscillatory potentials becomes 
6

L2
2  , where we have 

redimensionalized to the local mesh spacing, L. The Debye limiting value following from this 

derivation would be 45.26  . 

Laplace. The Laplacian space charge option specifies that the charge density is zero and no 

space charge limiting is needed. 

 o

0




 (153) 

i.e., charge exists only on object surfaces and external boundaries, as determined by the 

boundary conditions. Space charge iterations may still be required, however, due to the treatment 

of surface electric fields. 
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Linear (Debye Shielding). The Linear space charge option solves the Helmholtz or Debye-

Huckel equation: 
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Non-Linear. Non-linear space charge is appropriate for most low-earth-orbit type plasmas. 

Poisson’s equation is solved with space charge given by: 
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The term C(,E) (analytic focusing) comes from fitting a finite temperature spherical (Langmuir-

Blodgett) sheath. If analytic convergence is turned off (on the Potentials Advanced screen) then 
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C(,E) is set to zero. Additional adjustments are made to the convergence portion of this formula 

for significant values of velocity. 

 

 
 

   3/ 2

nl0 20
nl 3/ 2 3/ 2

nl nl

max 1,C ,E 4d / / 3
Max , 1/ 1

d 21 4 1 4

          
                      (157) 

Note that the derivative of the convergence contribution to the charge density with respect to the 

potential is assumed to be negligible. 

Frozen Ion. The Frozen Ion formulation is intended for short timescale (typically sub-

microsecond) problems for which it is a good approximation to assume that ions remain 

stationary and at ambient density (―ion matrix‖ approximation), but electrons achieve barometric 

equilibrium. The space charge function depends on the mesh-dependent potential, 1 < 0, which 

satisfies 

 
     

2

1 11 exp / D       
 (158) 

for D>. Otherwise, 1=-110
-6

. The meaning of this quantity is that the charge density increases 

linearly at a stable rate for negative potentials between zero and 1, and then asymptotes to the 

ambient ion density for potentials more negative than 1.  

The space charge is then given by 
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The derivative of charge with respect to potential appears in the variational function as a 

coefficient of 
2
. If this is too large, then minimizing 

2 
means you oscillate from one grid point 

to the next in order to get lots of intermediate zeroes, which is not a satisfactory solution. 

Full Trajectory Ions. Ion densities are calculated from steady-state ion trajectories. Electrons 

are barometric.  
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Hybrid PIC. This algorithm is used for timescales (typically sub-millisecond) on which it is 

practical to treat ion motion, but electrons may be considered in barometric equilibrium. The ion 

density is computed from actual ion macroparticles. The electron charge density is, 
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Full PIC. For this option, it is assumed that the total charged density (electron and ion) was 

previously computed and stored. 

  = 
tracked

 (165) 
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3.5 Macroparticles 

Macroparticles represent either current or charge. Macroparticles that represent current are used 

for steady-state problems and ones that represent charge are used for dynamic problems. 

Macroparticles are also used for visualization.  

3.5.1 Macroparticle Creation 

When macroparticles are created at a sheath surface, the sheath surface is divided into triangles 

and a macroparticle representing the current from that section of the sheath is created at the 

center of the triangle.  

When macroparticles are created at the problem boundary, the outer surface of each grid 

boundary volume element is divided into squares (of size requested by the user) and a 

macroparticle is created at the center of each square to represent either the current through that 

area (―Boundary‖ and ―BField‖) or the charge passing through that area during a user specified 

time (―Boundary Injection‖). 

When macroparticles are created throughout the volume (for uniform charge density 

initialization or charge exchange), they are created at points appropriate to the weighting 

functions.  

When macroparticles are created at user specified locations with user specified velocities, each 

macroparticle represents current. 

For visualization only, macroparticles can also be created at the intersection of the sheath surface 

and a user specified plane. 

3.5.2 Macroparticle Tracking 

Macroparticles are tracked using a third order energy conserving algorithm.  
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where 
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The electric field is that at the location of the macroparticle determined by interpolation from the 

nodes of the volume element. The magnetic field is a constant, uniform field supplied by the 

user. 

Macroparticles are tracked for a timestep, which can be as long as a minute for static problems or 

as short as microseconds for dynamic problems. The timestep is divided into substeps such that 

the macroparticle can travel no more than a fraction of the local mesh size in a single substep. By 

default the fraction is 0.1; the user may specify an alternative value. The particle’s total energy is 

calculated at the beginning of the timestep and preserved during the timestep. Changes in 

potential between timesteps will be reflected by change in the particle’s total energy. 

If the macroparticle represents charge, at the end of each timestep, and optionally at the end of 

each substep, the charge and current are assigned to the nodes of the element the macroparticle is 

in using the same weights as the potential. The charge density (charge divided by element 

volume) is assigned to the element. If the assignment is performed at the end of each substep, the 

charge assigned is divided by the fraction of the timestep that the substep represents.  

If the macroparticle represent currents, at the end of each substep its charge density (current 

times substep time) is optionally assigned to the element within whose bounds the macroparticle 

is.  

When a macroparticle impacts a surface element, its current is assigned to the surface element.  

3.5.3 Macroparticle Splitting 

Macroparticles are split both to avoid having heavy macroparticles in well-resolved regions and 

to simulate a thermal distribution. Macroparticle splitting has been implemented for 

macroparticles read from an external file, for a uniform distribution of macroparticles for 

initialization, and for macroparticles injected from the boundary. Macroparticles can also be split 

when entering a more finely resolved grid. 

General Principles 

1. Macroparticles are split in velocity space only. Because we frequently find ourselves in high-

field regions, spatial splitting would raise problems with energy conservation. 

2. To be split in velocity space, a macroparticle must carry a temperature. We assume the 

temperature is always isotropic. The fission products carry half the temperature of the 

original macroparticle, while the remaining thermal energy appears as kinetic energy of the 

split macroparticles. 
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3. For splitting purposes, we define the Z-axis to be along the direction of the macroparticle 

velocity, the X-axis randomly chosen in the plane normal to Z, and the Y-axis mutually 

perpendicular. 

4. We split into two or three macroparticles with added velocity along each axis, except that we 

may elect not to split along the Z-direction if the kinetic energy exceeds the thermal energy. 

Not splitting along Z helps ameliorate macroparticle proliferation, but makes an error by not 

preserving the original macroparticle temperature along Z. We thus end up with eight, nine, 

or twenty-seven new macroparticles. 

5. Macroparticle velocity is assumed to be acquired by acceleration rather than actual drift (i.e., 

spacecraft velocity). If there is actual drift (e.g., ram velocity), then the drift velocity should 

be removed before splitting the macroparticle, and added back after. 

6. If the macroparticle with speed u0 is split by two along the X or Y axis, the new velocity is

me707.0  . Along the Z axis, the velocity increment is calculated as if the temperature 

were 
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7. If the macroparticle with speed u0 is split by three along the X or Y axis, there is a zero-

velocity central macroparticle and two ―probe‖ macroparticles with velocity me866.0  . 

Along the Z axis, the velocity increment is calculated as if the temperature were 
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Examples of the effects of macroparticle splitting appear in Plasma Interactions with Spacecraft, 

Final Report. 

3.6 Particle-in-Cell Tools 

3.6.1 Transverse Surface Currents 

We developed a pseudopotential approach (similar to the velocity potential used to describe 

potential flow [36] in fluid dynamics) to the solution of the current continuity equation for the 

computation of transverse surface currents on a spacecraft acting as an antenna. As a boundary 

condition, one surface element of each antenna element is specified as connected to the biasing 

power supply, and the solution provides the required current. The vector transverse surface 

current in each surface element is that which provides the best fit to the edge currents. 

A solution having no circulating currents is guaranteed if we assign a pseudopotential value to 

each element of surface and take the current across their common edge to be proportional to the 

difference in their pseudopotentials. (In that case, current that flows ―downhill‖ would need to 

flow back ―uphill‖ in order to circulate.) The current is also taken as proportional to the edge 

length and inversely proportional to the distance between the centers of the elements. 
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The result of the above treatment is a matrix that multiplies the vector of pseudopotentials to 

describe the buildup of charge in the surface elements, which is then set equal to the source 

vector generated from Nascap-2k results at each timestep. This system of equations is then 

solved using the ICCG (Incomplete Cholesky Conjugate Gradient) [37] algorithm. 

Figure 22 shows graphically the quantities that make up the surface current equation for each 

surface element. Moving the surface currents to the left side of the equation, and all other 

(known) quantities to the right, and expressing the edge currents as proportional to 

pseudopotential differences, results in a sparse symmetric matrix that is amenable to solution 

using the ICCG algorithm once the surface element connected to the power supply (denoted the 

―injection element‖) is set to a fixed potential. The current required to bias the conductor may be 

obtained by evaluating the equation associated with the injection element and can be verified to 

be the sum of the total change in charge less plasma currents for all the remaining surfaces of the 

conductor. Surface currents are solved separately for each electrically isolated component. 

 

Figure 22. The Change in Charge on a Surface Element Is Made Up of Plasma Currents 

and Surface Currents 

3.6.2 Propagating Fields 

The transverse surface currents, the volume ion currents computed during particle tracking, and 

the volume electron currents saved in the database by an external code, are a source of 

propagating electromagnetic fields. Nascap-2k can compute the magnetic field, the vector 

potential, and the rate of change of the vector potential from these currents.  
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where the sums are over the surface elements (i) and volume elements (k). 
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LIST OF SYMBOLS  

 

bi Range parameters 

d Thickness or distance 

e Magnitude of the electron charge (1.60 × 10
-19

 C) 

f Distribution function 

g Reduction in plasma density in wake in the absence of surface potentials 

i and j indices 

jth Plasma thermal current 

jx component of the current 

l length 

m Particle mass 

n Component density 

na Ambient plasma density 

n Surface normal 

q Charge on a surface or particle charge 

qi Range parameters 

r Distance 

t time 

v or v Velocity 

u or v parameters in BEM 

x or x Position or path length 

y substitute integrand 

A Area or Point of triangle in BEM discussion  

A BEM matrix 

B and 

B 
Magnetic field and magnetic field magnitude or point of triangle in BEM discussion 
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C Capacitance or point of triangle in BEM discussion or Convergence factor 

DCL Child Langmuir distance 

D electric field (in Maxwell equation) 

E Particle energy in eV 

E and 

E 
Electric field and electric field magnitude 

Eo Parameter of Gaussian component of Fontheim distribution function 

Emax Energy at which secondary yield due to normally incident electrons peaks 

F Flux or interpolant 

F BEM matrix 

G BEM matrix 

H Heaviside step function 

G interpolant 

I Current (amperes) 

I Current vector 

L Mesh spacing or lower limit of energy or velocity integral 

Ni Interpolant 

P Point of triangle in BEM discussion or point in volume 

Q Finite element matrix 

R Resistance or Sphere radius or Escape depth (range) or point in volume 

S Surface area or Stopping power or Surface index or reduced charge density 

T Time interval 

 pairwise scalar products in BEM 

U Velocity of plasma with respect to spacecraft, -Vsc 

V Volume or BEM coefficients 

Vsc Spacecraft velocity 

W Finite element matrix 
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Y Yield 

Z Atomic number 

 Parameter used in ion secondary yield or Parameters used in space charge limiting or parameter used to 

specify power law component of Fontheim distribution function 

 Parameter used in ion secondary yield 

 Angle between flow vector and the particle velocity 

max Peak yield for normal incidence 

 Permittivity of vacuum (8.854 × 10
-12

 F m
-1

) 

 Relative dielectric constant 

 Surface potential or Space potential 

b Barometric potential 

 Backscatter coefficient or Fraction of the distribution 

 Parameter used in kappa distribution function 

D Debye length 

 iteration index 

 Plasma temperature in eV 

 Resistivity or Charge density 

 Surface charge density 

CEX Charge exchange cross section 

 Small number used to evaluate current integral 

 Incident angle or Angle between neutralizer axis and look direction 

 Coefficient in Fontheim formula 

gauss Parameter of Gaussian component of Fontheim distribution function 

 Difference in potential across dielectric layer 

 Potential vector 

 Solid angle 
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